08-最短路径算法

实现一个最短路径算法,并分析其时间复杂度和空间复杂度。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import java.util.*;

public class Graph {
// 用Map来表示图的邻接表
private Map<Integer, List<Node>> adjacencyList;

// 构造函数,初始化邻接表
public Graph(int vertices) {
adjacencyList = new HashMap<>();
for (int i = 1; i <= vertices; i++) {
adjacencyList.put(i, new ArrayList<>());
}
}

// 添加边
public void addEdge(int source, int destination, int weight) {
Node node = new Node(destination, weight);
adjacencyList.get(source).add(node);

node = new Node(source, weight);
adjacencyList.get(destination).add(node);
}

// 获取起点到终点的最短路径
public void dijkstra(int sourceVertex) {
PriorityQueue<Node> priorityQueue = new PriorityQueue<>(adjacencyList.size(), Comparator.comparingInt(o -> o.cost));

// 初始化距离数组和visited数组
int[] distance = new int[adjacencyList.size()];
boolean[] visited = new boolean[adjacencyList.size()];

// 设置起点的距离为0,并将其加入优先队列
distance[sourceVertex - 1] = 0;
priorityQueue.add(new Node(sourceVertex, 0));

// 处理优先队列中的节点,直到队列为空
while (!priorityQueue.isEmpty()) {
int currentVertex = priorityQueue.remove().vertex;

if (visited[currentVertex - 1]) {
continue;
}

visited[currentVertex - 1] = true;

List<Node> adjacentNodes = adjacencyList.get(currentVertex);
for (Node adjacentNode : adjacentNodes) {
int adjacentVertex = adjacentNode.vertex;
int edgeWeight = adjacentNode.cost;

if (!visited[adjacentVertex - 1]) {
int newCost = distance[currentVertex - 1] + edgeWeight;
if (newCost < distance[adjacentVertex - 1]) {
distance[adjacentVertex - 1] = newCost;
priorityQueue.add(new Node(adjacentVertex, newCost));
}
}
}
}

// 打印起点到各个顶点的最短距离
for (int i = 0; i < distance.length; ++i) {
System.out.println("Distance from " + sourceVertex + " to " + (i + 1) + " is " + distance[i]);
}
}

// 表示图中每个节点的类
private static class Node {
int vertex;
int cost;

public Node(int vertex, int cost) {
this.vertex = vertex;
this.cost = cost;
}
}
}

最短路径算法是用于找到图中两个节点之间的最短路径的一组算法。其中,Dijkstra's algorithm和Bellman-Ford algorithm是最常用的两种算法。其时间复杂度和空间复杂度如下:

  • Dijkstra’s Algorithm

时间复杂度O(ElogV),其中E为边数,V为节点数。

空间复杂度O(V),其中V为节点数。

  • Bellman-Ford Algorithm

时间复杂度:O(VE),其中E为边数,V为节点数。

空间复杂度:O(V),其中V为节点数。

需要注意的是,Dijkstra’s algorithm适用于有向无环图(DAG)或非负权重图,而Bellman-Ford algorithm则适用于带有负权重的图。

验证:

1
2
3
4
5
6
7
8
9
10
11
12
public static void main(String[] args) {
Graph graph = new Graph(5);

graph.addEdge(1, 2, 2);
graph.addEdge(1, 4, 1);
graph.addEdge(2, 3, 3);
graph.addEdge(3, 4, 4);
graph.addEdge(4, 5, 3);
graph.addEdge(3, 5, 2);

graph.dijkstra(1);
}

08-最短路径算法
https://janycode.github.io/2017/06/28/03_数据结构/04_算法/08-最短路径算法/
作者
Jerry(姜源)
发布于
2017年6月28日
许可协议