02-Redisson实现分布式锁

image-20220207094644153

关键词

基于NIO的Netty框架,生产环境使用分布式锁

redisson加锁:lua脚本加锁(其他客户端自旋)

自动延时机制:启动watch dog,后台线程,每隔10秒检查一下客户端1还持有锁key,会不断的延长锁key的生存时间

可重入锁机制:第二个if判断 ,myLock :{“8743c9c0-0795-4907-87fd-6c719a6b4586:1”:2 }

释放锁:无锁直接返回;有锁不是我加的,返回;有锁是我加的,执行hincrby -1,当重入锁减完才执行del操作

Redis使用同一个Lua解释器来执行所有命令,Redis保证以一种原子性的方式来执行脚本:当lua脚本在执行的时候,不会有其他脚本和命令同时执行,这种语义类似于 MULTI/EXEC。从别的客户端的视角来看,一个lua脚本要么不可见,要么已经执行完

一、 Redisson使用

Redisson是架设在Redis基础上的一个Java驻内存数据网格(In-Memory Data Grid)。
Redisson在基于NIO的Netty框架上,生产环境使用分布式锁。

加入jar包的依赖

1
2
3
4
5
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson</artifactId>
<version>2.7.0</version>
</dependency>

配置Redisson

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
public class RedissonManager {
private static Config config = new Config();
//声明redisso对象
private static Redisson redisson = null;

//实例化redisson
static{
config.useClusterServers()
// 集群状态扫描间隔时间,单位是毫秒
.setScanInterval(2000)
//cluster方式至少6个节点(3主3从,3主做sharding,3从用来保证主宕机后可以高可用)
.addNodeAddress("redis://127.0.0.1:6379" )
.addNodeAddress("redis://127.0.0.1:6380")
.addNodeAddress("redis://127.0.0.1:6381")
.addNodeAddress("redis://127.0.0.1:6382")
.addNodeAddress("redis://127.0.0.1:6383")
.addNodeAddress("redis://127.0.0.1:6384");

//得到redisson对象
redisson = (Redisson) Redisson.create(config);
}

//获取redisson对象的方法
public static Redisson getRedisson(){
return redisson;
}
}

锁的获取和释放

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
public class DistributedRedisLock {
//从配置类中获取redisson对象
private static Redisson redisson = RedissonManager.getRedisson();
private static final String LOCK_TITLE = "redisLock_";

//加锁
public static boolean acquire(String lockName){
//声明key对象
String key = LOCK_TITLE + lockName;
//获取锁对象
RLock mylock = redisson.getLock(key);
//加锁,并且设置锁过期时间3秒,防止死锁的产生 uuid+threadId
mylock.lock(2,3,TimeUtil.SECOND);
//加锁成功
return true;
}

//锁的释放
public static void release(String lockName){
//必须是和加锁时的同一个key
String key = LOCK_TITLE + lockName;
//获取所对象
RLock mylock = redisson.getLock(key);
//释放锁(解锁)
mylock.unlock();
}
}

业务逻辑中使用分布式锁

1
2
3
4
5
6
7
8
9
10
11
public String discount() throws IOException{
String key = "lock001";
//加锁
DistributedRedisLock.acquire(key);
//执行具体业务逻辑
dosoming
//释放锁
DistributedRedisLock.release(key);
//返回结果
return soming;
}

二、Redisson分布式锁的实现原理

image-20230527102033727

2.1 加锁机制

  1. 如果该客户端面对的是一个redis cluster集群,他首先会根据hash节点选择一台机器。
  2. 发送lua脚本到redis服务器上,脚本如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
//exists',KEYS[1])==0 不存在,没锁
"if (redis.call('exists',KEYS[1])==0) then "+ --看有没有锁
// 命令:hset,1:第一回
"redis.call('hset',KEYS[1],ARGV[2],1) ; "+ --无锁 加锁
// 配置锁的生命周期
"redis.call('pexpire',KEYS[1],ARGV[1]) ; "+
"return nil; end ;" +

//可重入操作,判断是不是我加的锁
"if (redis.call('hexists',KEYS[1],ARGV[2]) ==1 ) then "+ --我加的锁
//hincrby 在原来的锁上加1
"redis.call('hincrby',KEYS[1],ARGV[2],1) ; "+ --重入锁
"redis.call('pexpire',KEYS[1],ARGV[1]) ; "+
"return nil; end ;" +

//否则,锁存在,返回锁的有效期,决定下次执行脚本时间
"return redis.call('pttl',KEYS[1]) ;" --不能加锁,返回锁的时间

lua的作用:保证这段复杂业务逻辑执行的原子性。

lua的解释

  • KEYS[1]) : 加锁的key
  • ARGV[1] : key的生存时间,默认为30秒
  • ARGV[2] : 加锁的客户端ID (UUID.randomUUID()) + “:” + threadId)

第一段if判断语句,就是用“exists myLock”命令判断一下,如果你要加锁的那个锁key不存在的话,你就进行加锁。

如何加锁呢?很简单,用下面的命令:

  • hset myLock
    8743c9c0-0795-4907-87fd-6c719a6b4586:1 1

通过这个命令设置一个hash数据结构,这行命令执行后,会出现一个类似下面的数据结构:

  • myLock :{“8743c9c0-0795-4907-87fd-6c719a6b4586:1”:1 }

上述就代表“8743c9c0-0795-4907-87fd-6c719a6b4586:1”这个客户端对“myLock”这个锁key完成了加锁。

接着会执行“pexpire myLock 30000”命令,设置myLock这个锁key的生存时间是30秒。

锁互斥机制

那么在这个时候,如果客户端2来尝试加锁,执行了同样的一段lua脚本,会咋样呢?

很简单,第一个if判断会执行“exists myLock”,发现myLock这个锁key已经存在了。

接着第二个if判断,判断一下,myLock锁key的hash数据结构中,是否包含客户端2的ID,但是明显不是的,因为那里包含的是客户端1的ID。

所以,客户端2会获取到pttl myLock返回的一个数字,这个数字代表了myLock这个锁key的剩余生存时间。比如还剩15000毫秒的生存时间。

此时客户端2会进入一个while循环,不停的尝试加锁。

自动延时机制

只要客户端1一旦加锁成功,就会启动一个watch dog看门狗,他是一个后台线程,会每隔10秒检查一下,如果客户端1还持有锁key,那么就会不断的延长锁key的生存时间。

可重入锁机制

第一个if判断 肯定不成立,“exists myLock”会显示锁key已经存在了。

第二个if判断 会成立,因为myLock的hash数据结构中包含的那个ID,就是客户端1的那个ID,也就是“8743c9c0-0795-4907-87fd-6c719a6b4586:1”

此时就会执行可重入加锁的逻辑,他会用:incrby myLock 8743c9c0-0795-4907-87fd-6c71a6b4586:1 1

通过这个命令,对客户端1的加锁次数,累加1。数据结构会变成:myLock :{“8743c9c0-0795-4907-87fd-6c719a6b4586:1”:2 }

2.2 释放锁机制

执行lua脚本如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# 如果key已经不存在,说明已经被解锁,直接发布(publish)redis消息(无锁,直接返回)
"if (redis.call('exists', KEYS[1]) == 0) then " +
"redis.call('publish', KEYS[2], ARGV[1]); " +
"return 1; " +
"end;" +
# key和field不匹配,说明当前客户端线程没有持有锁,不能主动解锁。 不是我加的锁 不能解锁 (有锁不是我加的,返回)
"if (redis.call('hexists', KEYS[1], ARGV[3]) == 0) then " +
"return nil;" +
"end; " +
# 将value减1 (有锁是我加的,进行hincrby -1 )
"local counter = redis.call('hincrby', KEYS[1], ARGV[3],-1); " +
# 如果counter>0说明锁在重入,不能删除key
"if (counter > 0) then " +
"redis.call('pexpire', KEYS[1], ARGV[2]); " +
"return 0; " +
# 删除key并且publish 解锁消息
# 可重入锁减完了,进行del操作
"else " +
"redis.call('del', KEYS[1]); " + #删除锁
"redis.call('publish', KEYS[2], ARGV[1]); " +
"return 1; "+
"end; " +
"return nil;",
  • – KEYS[1] :需要加锁的key,这里需要是字符串类型。
  • – KEYS[2] :redis消息的ChannelName,一个分布式锁对应唯一的一个channelName: “redisson_lockchannel{” + getName() + “}”
  • – ARGV[1] :reids消息体,这里只需要一个字节的标记就可以,主要标记redis的key已经解锁,再结合 redis的Subscribe,能唤醒其他订阅解锁消息的客户端线程申请锁。
  • – ARGV[2] :锁的超时时间,防止死锁
  • – ARGV[3] :锁的唯一标识,也就是刚才介绍的 id(UUID.randomUUID()) + “:” + threadId

如果执行lock.unlock(),就可以释放分布式锁,此时的业务逻辑也是非常简单的。

其实说白了,就是每次都对myLock数据结构中的那个加锁次数减1。

如果发现加锁次数是0了,说明这个客户端已经不再持有锁了,此时就会用:

“del myLock”命令,从redis里删除这个key。
然后呢,另外的客户端2就可以尝试完成加锁了。

分布式锁特性

互斥性

任意时刻,只能有一个客户端获取锁,不能同时有两个客户端获取到锁。

同一性

锁只能被持有该锁的客户端删除,不能由其它客户端删除。

可重入性

持有某个锁的客户端可继续对该锁加锁,实现锁的续租

容错性

锁失效后(超过生命周期)自动释放锁(key失效),其他客户端可以继续获得该锁,防止死锁

分布式锁的实际应用

数据并发竞争

利用分布式锁可以将处理串行化,前面已经讲过了。

防止库存超卖

image-20230527102400784

订单1下单前会先查看库存,库存为10,所以下单5本可以成功;

订单2下单前会先查看库存,库存为10,所以下单8本可以成功;

订单1和订单2 同时操作,共下单13本,但库存只有10本,显然库存不够了,这种情况称为库存超卖。

可以采用分布式锁解决这个问题。

image-20230527102427471

订单1和订单2都从Redis中获得分布式锁(setnx),谁能获得锁谁进行下单操作,这样就把订单系统下单的顺序串行化了,就不会出现超卖的情况了。伪码如下:

1
2
3
4
5
6
7
8
9
10
//加锁并设置有效期
if(redis.lock("RDL",200)){
//判断库存
if (orderNum<getCount()){
//加锁成功 ,可以下单
order(5);
//释放锁
redis,unlock("RDL");
}
}

注意此种方法会降低处理效率,这样不适合秒杀的场景,秒杀可以使用CAS和Redis队列的方式。


02-Redisson实现分布式锁
https://janycode.github.io/2021/11/18/15_分布式/03_分布式锁/02-Redisson实现分布式锁/
作者
Jerry(姜源)
发布于
2021年11月18日
许可协议