02-Redisson实现分布式锁
关键词
基于NIO的Netty框架,生产环境使用分布式锁
redisson加锁:lua脚本加锁(其他客户端自旋)
自动延时机制:启动watch dog,后台线程,每隔10秒检查一下客户端1还持有锁key,会不断的延长锁key的生存时间
可重入锁机制:第二个if判断 ,myLock :{“8743c9c0-0795-4907-87fd-6c719a6b4586:1”:2 }
释放锁:无锁直接返回;有锁不是我加的,返回;有锁是我加的,执行hincrby -1,当重入锁减完才执行del操作
Redis使用同一个Lua解释器来执行所有命令,Redis保证以一种原子性的方式来执行脚本:当lua脚本在执行的时候,不会有其他脚本和命令同时执行,这种语义类似于 MULTI/EXEC。从别的客户端的视角来看,一个lua脚本要么不可见,要么已经执行完
一、 Redisson使用
Redisson是架设在Redis基础上的一个Java驻内存数据网格(In-Memory Data Grid)。
Redisson在基于NIO的Netty框架上,生产环境使用分布式锁。
加入jar包的依赖
1 |
|
配置Redisson
1 |
|
锁的获取和释放
1 |
|
业务逻辑中使用分布式锁
1 |
|
二、Redisson分布式锁的实现原理
2.1 加锁机制
- 如果该客户端面对的是一个redis cluster集群,他首先会根据hash节点选择一台机器。
- 发送lua脚本到redis服务器上,脚本如下:
1 |
|
lua的作用:保证这段复杂业务逻辑执行的原子性。
lua的解释:
- KEYS[1]) : 加锁的key
- ARGV[1] : key的生存时间,默认为30秒
- ARGV[2] : 加锁的客户端ID (UUID.randomUUID()) + “:” + threadId)
第一段if判断语句,就是用“exists myLock”命令判断一下,如果你要加锁的那个锁key不存在的话,你就进行加锁。
如何加锁呢?很简单,用下面的命令:
- hset myLock
8743c9c0-0795-4907-87fd-6c719a6b4586:1 1
通过这个命令设置一个hash数据结构,这行命令执行后,会出现一个类似下面的数据结构:
- myLock :{“8743c9c0-0795-4907-87fd-6c719a6b4586:1”:1 }
上述就代表“8743c9c0-0795-4907-87fd-6c719a6b4586:1”这个客户端对“myLock”这个锁key完成了加锁。
接着会执行“pexpire myLock 30000”命令,设置myLock这个锁key的生存时间是30秒。
锁互斥机制
那么在这个时候,如果客户端2来尝试加锁,执行了同样的一段lua脚本,会咋样呢?
很简单,第一个if判断会执行“exists myLock”,发现myLock这个锁key已经存在了。
接着第二个if判断,判断一下,myLock锁key的hash数据结构中,是否包含客户端2的ID,但是明显不是的,因为那里包含的是客户端1的ID。
所以,客户端2会获取到pttl myLock返回的一个数字,这个数字代表了myLock这个锁key的剩余生存时间。比如还剩15000毫秒的生存时间。
此时客户端2会进入一个while循环,不停的尝试加锁。
自动延时机制
只要客户端1一旦加锁成功,就会启动一个watch dog看门狗,他是一个后台线程,会每隔10秒检查一下,如果客户端1还持有锁key,那么就会不断的延长锁key的生存时间。
可重入锁机制
第一个if判断 肯定不成立,“exists myLock”会显示锁key已经存在了。
第二个if判断 会成立,因为myLock的hash数据结构中包含的那个ID,就是客户端1的那个ID,也就是“8743c9c0-0795-4907-87fd-6c719a6b4586:1”
此时就会执行可重入加锁的逻辑,他会用:incrby myLock 8743c9c0-0795-4907-87fd-6c71a6b4586:1 1
通过这个命令,对客户端1的加锁次数,累加1。数据结构会变成:myLock :{“8743c9c0-0795-4907-87fd-6c719a6b4586:1”:2 }
2.2 释放锁机制
执行lua脚本如下:
1 |
|
- – KEYS[1] :需要加锁的key,这里需要是字符串类型。
- – KEYS[2] :redis消息的ChannelName,一个分布式锁对应唯一的一个channelName: “redisson_lockchannel{” + getName() + “}”
- – ARGV[1] :reids消息体,这里只需要一个字节的标记就可以,主要标记redis的key已经解锁,再结合 redis的Subscribe,能唤醒其他订阅解锁消息的客户端线程申请锁。
- – ARGV[2] :锁的超时时间,防止死锁
- – ARGV[3] :锁的唯一标识,也就是刚才介绍的 id(UUID.randomUUID()) + “:” + threadId
如果执行lock.unlock(),就可以释放分布式锁,此时的业务逻辑也是非常简单的。
其实说白了,就是每次都对myLock数据结构中的那个加锁次数减1。
如果发现加锁次数是0了,说明这个客户端已经不再持有锁了,此时就会用:
“del myLock”命令,从redis里删除这个key。
然后呢,另外的客户端2就可以尝试完成加锁了。
分布式锁特性
互斥性
任意时刻,只能有一个客户端获取锁,不能同时有两个客户端获取到锁。
同一性
锁只能被持有该锁的客户端删除,不能由其它客户端删除。
可重入性
持有某个锁的客户端可继续对该锁加锁,实现锁的续租
容错性
锁失效后(超过生命周期)自动释放锁(key失效),其他客户端可以继续获得该锁,防止死锁
分布式锁的实际应用
数据并发竞争
利用分布式锁可以将处理串行化,前面已经讲过了。
防止库存超卖
订单1下单前会先查看库存,库存为10,所以下单5本可以成功;
订单2下单前会先查看库存,库存为10,所以下单8本可以成功;
订单1和订单2 同时操作,共下单13本,但库存只有10本,显然库存不够了,这种情况称为库存超卖。
可以采用分布式锁解决这个问题。
订单1和订单2都从Redis中获得分布式锁(setnx),谁能获得锁谁进行下单操作,这样就把订单系统下单的顺序串行化了,就不会出现超卖的情况了。伪码如下:
1 |
|
注意此种方法会降低处理效率,这样不适合秒杀的场景,秒杀可以使用CAS和Redis队列的方式。